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CONTENTS 1

In these short lecture notes we recall the basic concepts and results from
functional analysis and calculus that are useful for a general purpose. A first
chapter is devoted to general normed spaces. We begin by establishing some of
their main properties, with an emphasis on the linear functions between spaces.
This leads us to bounded linear functionals and the topological dual. Second,
we review the Hahn-Banach Separation Theorem, a very powerful tool with
important consequences. Next, we discuss some relevant results concerning the
weak topology, especially in terms of closedness and compactness. Finally, we
include a subsection on differential calculus, which also provides an introduc-
tion to standard smooth optimization techniques. The second chapter deals
with Hilbert spaces, and their very rich geometric structure, including the ideas
of projection and orthogonality. We also revisit some of the general concepts
from the first section (duality, reflexivity, weak convergence) in the light of this
geometry.

For a comprehensive presentation, the reader is referred to [1] and [6]. In
what follows, all vector spaces are defined over R.

These notes are a partial reproduction of a preprint version of [5], exclusively
for pedagogic purposes, in accordance with the copyright agreement between the
author and Springer.
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Chapter 1

Normed spaces

A norm on a real vector space X is a function ‖ ·‖ : X → R such that

i) ‖x‖> 0 for all x #= 0;

ii) ‖αx‖= |α|‖x‖ for all x ∈ X and α ∈ R;

iii) The triangle inequality ‖x+ y‖ ≤ ‖x‖+‖y‖ holds for all x,y ∈ X .

A normed space is a vector space where a norm has been specified.

Example 1.1. The space RN with the norms: ‖x‖∞ = max
i=1,...,N

|xi|, or ‖x‖p =

(
N
∑

i=1
|xi|p

)1/p

, for p ≥ 1.

Example 1.2. The space C ([a,b];R) of continuous real-valued functions on the
interval [a,b], with the norm ‖ ·‖∞ defined by ‖ f‖∞ = max

t∈[a,b]
| f (t)|.

Example 1.3. The space L1(a,b ;R) of Lebesgue-integrable real-valued functions
on the interval [a,b], with the norm ‖ ·‖1 defined by ‖ f‖1 =

∫ b
a | f (t)|dt.

Given r > 0 and x ∈ X , the open ball of radius r centered at x is the set

BX (x,r) = {y ∈ X : ‖y− x‖< r}.

The closed ball is
B̄X (x,r) = {y ∈ X : ‖y− x‖ ≤ r}.

We shall omit the reference to the space X whenever it is clear from the context.
A set is bounded if it is contained in some ball.

In a normed space one can define a canonical topology as follows: a set V
is a neighborhood of a point x if there is r > 0 such that B(x,r) ⊂ V . We call
it the strong topology, in contrast with the weak topology to be defined later on.
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4 CHAPTER 1. NORMED SPACES

We say that a sequence (xn) in X converges (strongly) to x̄ ∈ X , and write
xn → x̄, as n → ∞ if lim

n→∞
‖xn − x̄‖ = 0. The point x̄ is the limit of the sequence.

On the other hand, (xn) has the Cauchy property, or it is a Cauchy sequence,
if lim

n,m→∞
‖xn −xm‖= 0. Every convergent sequence has the Cauchy property, and

every Cauchy sequence is bounded. A Banach space is a normed space in which
every Cauchy sequence is convergent, a property called completeness.

Example 1.4. The spaces in Examples 1.1, 1.2 and 1.3 are Banach spaces.

We have the following result:

Theorem 1.5 (Baire’s Category Theorem). Let X be a Banach space and let (Cn)
be a sequence of closed subsets of X . If each Cn has empty interior, then so does⋃

n∈N Cn.

Proof. A set C ⊂ X has empty interior if, and only if, every open ball intersects
Cc. Let B be an open ball. Take another open ball B′ whose closure is contained
in B. Since Cc

0 has empty interior, B′ ∩Cc
0 #= /0. Moreover, since both B′ and Cc

0 are
open, there exist x1 ∈ X and r1 ∈ (0, 1

2 ) such that B(x1,r1)⊂ B′ ∩Cc
0. Analogously,

there exist x2 ∈ X and r ∈ (0, 1
4 ) such that B(x2,r2)⊂ B(x1,r1)∩Cc

1 ⊂ B′ ∩Cc
0 ∩Cc

1.
Inductively, one defines (xm,rm) ∈ X ×R such that xm ∈ B(xn,rn)∩

(⋂n
k=0 Cc

k
)

and
rm ∈ (0,2−m) for each m > n ≥ 1. In particular, ‖xm − xn‖ < 2−n whenever m >
n ≥ 1. It follows that (xn) is a Cauchy sequence and so, it must converge to some
x̄, which must belong to B′ ∩

(⋂∞
k=0 Cc

k
)
⊂ B∩ (

⋃∞
k=0 Ck )

c, by construction.

We shall find several important consequences of this result, especially the
Banach-Steinhaus Uniform Boundedness Principle (Theorem 1.9) and the con-
tinuity of convex functions in the interior of their domain (see, for instance,
[5]).

1.1 Bounded linear operators and functionals, topolog-
ical dual

Bounded linear operators
Let (X ,‖ · ‖X ) and (Y,‖ · ‖Y ) be normed spaces. A linear operator L : X → Y is
bounded if

‖L‖L (X ;Y ) := sup
‖x‖X=1

‖L(x)‖Y < ∞.

The function ‖ · ‖L (X ;Y ) is a norm on the space L (X ;Y ) of bounded linear
operators from (X ,‖ · ‖X ) to (Y,‖ · ‖Y ). For linear operators, boundedness and
(uniform) continuity are closely related. This is shown in the following result:

Proposition 1.6. Let (X ,‖ ·‖X ) and (Y,‖ ·‖Y ) be normed spaces and let L : X →Y
be a linear operator. The following are equivalent:

i) L is continuous in 0;
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ii) L is bounded; and

iii) L is uniformly Lipschitz-continuous in X .

Proof. Let i) hold. For each ε > 0 there is δ > 0 such that ‖L(h)‖Y ≤ ε whenever
‖h‖X ≤ δ . If ‖x‖X = 1, then ‖L(x)‖Y = δ−1‖L(δx)‖Y ≤ δ−1ε and so, sup

‖x‖=1
‖L(x)‖Y <

∞. Next, if ii) holds, then

‖L(x)−L(z)‖Y = ‖x− z‖X

∥∥∥∥L
(

x− z
‖x− z‖X

)∥∥∥∥≤ ‖L‖L (X ;Y ) ‖x− z‖X

and L is uniformly Lipschitz-continuous. Clearly, iii) implies i).

We have the following:

Proposition 1.7. If (X ,‖ ·‖X ) is a normed space and (Y,‖ ·‖Y ) is a Banach space,
then (L (X ;Y ),‖ ·‖L (X ;Y )) is a Banach space.

Proof. Let (Ln) be a Cauchy sequence in L (X ;Y ). Then, for each x ∈ X , the
sequence (Ln(x)) has the Cauchy property as well. Since Y is complete, there
exists L(x) = lim

n→∞
Ln(x). Clearly, the function L : X →Y is linear. Moreover, since

(Ln) is a Cauchy sequence, it is bounded. Therefore, there exists C > 0 such
that ‖Ln(x)‖Y ≤ ‖Ln‖L (X ;Y ) ‖x‖X ≤C‖x‖X for all x ∈ X . Passing to the limit, we
deduce that L ∈L (X ;Y ) and ‖L‖L (X ;Y ) ≤C. Finally, from the Cauchy property,
we easily deduce that lim

n→∞
‖Ln −L‖L (X ;Y ) = 0.

The kernel of L ∈ L (X ;Y ) is the set

ker(L) = {x ∈ X : L(x) = 0}= L−1(0),

which is a closed subspace of X . The range of L is

R(L) = L(X) = {L(x) : x ∈ X }.

It is a subspace of Y , but it is not necessarily closed.

An operator L ∈L (X ;Y ) is invertible if there exists an operator in L (Y ;X),
called the inverse of L, and denoted by L−1, such that L−1 ◦L(x) = x for all x ∈ X
and L ◦L−1(y) = y for all y ∈ Y . The set of invertible operators in L (X ;Y ) is
denoted by Inv(X ;Y ). We have the following:

Proposition 1.8. Let (X ,‖ ·‖X ) and (Y,‖ ·‖Y ) be Banach spaces. The set Inv(X ;Y )
is open in L (X ;Y ) and the function Φ : Inv(X ;Y )→ Inv(Y ;X), defined by Φ(L) =
L−1, is continuous.

Proof. Let L0 ∈ Inv(X ;Y ) and let L ∈ B(L0,‖L−1
0 ‖−1). Let IX be the identity

operator in X and write M = IX − L−1
0 ◦ L = L−1

0 ◦ (L0 − L). Denote by Mk the
composition of M with itself k times and define Mn =

n
∑

k=0
Mk. Since ‖M‖ < 1,



6 CHAPTER 1. NORMED SPACES

(Mn) is a Cauchy sequence in L (X ;X) and must converge to some M̄. But
M ◦Mn = Mn ◦M = Mn+1 − IX implies M̄ ◦ (IX −M) = (IX −M)◦ M̄ = IX , which in
turn gives

(M̄ ◦L−1
0 )◦L = L◦ (M̄ ◦L−1

0 ) = IX .

It ensues that L ∈ Inv(X ;Y ) and L−1 = M̄ ◦L−1
0 . For the continuity, since

‖L−1 −L−1
0 ‖ ≤ ‖L−1 ◦L0 − IX‖ ·‖L−1

0 ‖= ‖L−1
0 ‖ ·‖M̄−1 − IX‖

and
‖Mn+1 − IX‖= ‖M ◦Mn‖ ≤ ‖M‖ · (1−‖M‖)−1,

we deduce that

‖L−1 −L−1
0 ‖ ≤

‖L−1
0 ‖2

1−‖M‖‖L−L0‖.

Observe that Φ is actually Lipschitz-continuous in every closed ball B̄(L0,R)
with R < ‖L−1

0 ‖−1.

This and other useful calculus tools for normed spaces can be found in [2].

A remarkable consequence of linearity and completeness is that pointwise
boundedness implies boundedness in the operator norm ‖ · ‖L (X ;Y ). More pre-
cisely, we have the following consequence of Baire’s Category Theorem 1.5:

Theorem 1.9 (Banach-Steinhaus Uniform Boundedness Principle). Let (Lλ )λ∈Λ
be a family of bounded linear operators from a Banach space (X ,‖ · ‖X ) to a
normed space (Y,‖ ·‖Y ). If

sup
λ∈Λ

‖Lλ (x)‖Y < ∞

for each x ∈ X , then
sup
λ∈Λ

‖Lλ‖L (X ;Y ) < ∞.

Proof. For each n ∈ N, the set

Cn := {x ∈ X : sup
λ∈Λ

‖Lλ (x)‖Y ≤ n}

is closed, as intersection of closed sets. Since ∪n∈NCn = X has nonempty interior,
Baire’s Category Theorem 1.5 shows the existence of N ∈N, x̂ ∈ X and r̂ > 0 such
that B(x̂, r̂)⊂CN . This implies

r‖Lλ (h)‖ ≤ ‖Lλ (x̂+ rh)‖Y +‖Lλ (x̂)‖Y ≤ 2N

for each r < r̂ and λ ∈ Λ. It follows that sup
λ∈Λ

‖Lλ‖L (X ;Y ) < ∞.
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The topological dual and the bidual
The topological dual of a normed space (X ,‖ ·‖) is the normed space (X∗,‖ ·‖∗),
where X∗ = L (X ;R) and ‖ · ‖∗ = ‖ · ‖L (X ;R). It is actually a Banach space, by
Proposition 1.7. Elements of X∗ are bounded linear functionals. The bilinear
function 〈·, ·〉X∗,X : X∗ ×X → R, defined by

〈L,x〉X∗,X = L(x),

is the duality product between X and X∗. If the space can be easily guessed from
the context, we shall write 〈L,x〉 instead of 〈L,x〉X∗,X to simplify the notation.

The orthogonal space or annihilator of a subspace V of X is

V⊥ = {L ∈ X∗ : 〈L,x〉= 0 for all x ∈V },

which is a closed subspace of X∗, even if V is not closed.

The topological bidual of (X ,‖ ·‖) is the topological dual of (X∗,‖ ·‖∗), which
we denote by (X∗∗,‖ ·‖∗∗). Each x ∈ X defines a linear function µ : X → R by

µx(L) = 〈L,x〉X∗,X

for each L ∈ X∗. Since 〈L,x〉 ≤ ‖L‖∗ ‖x‖ for each x ∈ X and L ∈ X∗, we have
‖µx‖∗∗ ≤ ‖x‖, so actually µx ∈ X∗∗. The function J : X → X∗∗, defined by
J (x) = µx, is the canonical embedding of X into X∗∗. Clearly, the function
J is linear and continuous. We shall see later (Proposition 1.17) that J is
an isometry. This fact will imply, in particular, that the canonical embedding
J is injective. The space (X ,‖ ·‖) is reflexive if J is also surjective. In other
words, if every element µ of X∗∗ is of the form µ = µx for some x ∈ X . Neces-
sarily, (X ,‖ ·‖) must be a Banach space since it is homeomorphic to (X∗∗,‖ ·‖∗∗).

The adjoint operator
Let (X ,‖ ·‖X ) and (Y,‖ ·‖Y ) be normed spaces and let L∈L (X ;Y ). Given y∗ ∈Y ∗,
the function ζy∗ : X → R defined by

ζy∗(x) = 〈y∗,Lx〉Y ∗,Y

is linear and continuous. In other words, ζy∗ ∈ X∗. The adjoint of L is the
operator L∗ : Y ∗ → X∗ defined by

L∗(y∗) = ζy∗ .

In other words, L and L∗ are linked by the identity

〈L∗y∗,x〉X∗,X = 〈y∗,Lx〉Y ∗,Y
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We immediately see that L∗ ∈ L (Y ∗;X∗) and

‖L∗‖L (Y ∗;X∗) = sup
‖y∗‖Y∗=1

[
sup

‖x‖X=1
〈y∗,Lx〉Y ∗,Y

]
≤ ‖L‖L (X ;Y ).

We shall verify later (Corollary 1.18) that the two norms actually coincide.

1.2 The Hahn-Banach Separation Theorem
The Hahn-Banach Separation Theorem is a cornerstone in Functional and Con-
vex Analysis. As we shall see in next chapter, it has several important conse-
quences.

Let X be a real vector space. A set C ⊆ X is convex if for each pair of points
of C, the segment joining them also belongs to C. In other words, if the point
λx+(1−λ )y belongs to C whenever x,y ∈C and λ ∈ (0,1).

Theorem 1.10 (Hahn-Banach Separation Theorem). Let A and B be nonempty,
disjoint convex subsets of a normed space (X ,‖ ·‖).

i) If A is open, there exists L ∈ X∗ \{0} such that 〈L,x〉< 〈L,y〉 for each x ∈ A
and y ∈ B.

ii) If A is compact and B is closed, there exist L ∈ X∗ \ {0} and ε > 0 such
that 〈L,x〉+ ε ≤ 〈L,y〉 for each x ∈ A and y ∈ B.

Remarks
Before proceeding with the proof of the Hahn-Banach Separation Theorem 1.10,
some remarks are in order:

First, Theorem 1.10 is equivalent to

Theorem 1.11. Let C be a nonempty, convex subset of a normed space (X ,‖ ·‖)
not containing the origin.

i) If C is open, there exists L ∈ X∗ \{0} such that 〈L,x〉< 0 for each x ∈C.

ii) If C is closed, there exist L ∈ X∗ \{0} and ε > 0 such that 〈L,x〉+ε ≤ 0 for
each x ∈C.

Clearly, Theorem 1.11 is a special case of Theorem 1.10. To verify that they
are actually equivalent, simply write C = A−B and observe that C is open if A
is, while C is closed if A is compact and B is closed.

Second, part ii) of Theorem 1.11 can be easily deduced from part i) of The-
orem 1.10 by considering asufficiently small open ball A around the origin (not
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intersecting C), and writing B =C.

Finally, in finite-dimensional spaces, part i) of Theorem 1.11 can be obtained
without any topological assumptions on the sets involved. More precisely, we
have the following:

Proposition 1.12. Given N ≥ 1, let C be a nonempty and convex subset of RN

not containing the origin. Then, there exists v ∈ RN \{0} such that v · x ≤ 0 for
each x ∈C. In particular, if N ≥ 2 and C is open, then

V = {x ∈ RN : v · x = 0}

is a nontrivial subspace of RN that does not intersect C.

Proof. Let (xn) ∈ C such that the set {xn : n ≥ 1} is dense in C. Let Cn be the
convex hull of the set {xk : k = 1, . . . ,n} and let pn be the least-norm element of
Cn. By convexity, for each x ∈Cn and t ∈ (0,1), we have

‖pn‖2 ≤ ‖pn + t(x− pn)‖2 = ‖pn‖2 +2t pn · (x− pn)+ t2‖x− pn‖2.

Therefore,
0 ≤ 2‖pn‖2 ≤ 2 pn · x+ t‖x− pn‖2.

Letting t → 0, we deduce that pn ·x ≥ 0 for all x ∈Cn. Now write vn =−pn/‖pn‖.
The sequence (vn) lies in the unit sphere, which is compact. We may extract a
subsequence that converges to some v ∈ RN with ‖v‖= 1 (thus v #= 0) and v ·x ≤ 0
for all x ∈C.

Proof of Theorem 1.11
Many standard Functional Analysis textbooks begin by presenting a general
form of the Hahn-Banach Extension Theorem (see Theorem 1.13 below) and
used to prove Theorem 1.11. We preferred to take the opposite path here,
which has a more convex-analytic flavor. The same approach can be found, for
instance, in [7].

Step 1: If the dimension of X is at least 2, there is a nontrivial subspace of X
not intersecting C.
Take any two-dimensional subspace Y of X . If Y ∩C = /0 there is nothing to prove.
Otherwise, identify Y with R2 and use Proposition 1.12 to obtain a subspace of
Y disjoint from Y ∩C, which clearly gives a subspace of X not intersecting C.

Step 2: There is a closed subspace M of X such that M∩C = /0 and the quotient
space X/M has dimension 1.
Let M be the collection of all subspaces of X not intersecting C, ordered by
inclusion. Step 1 shows that M #= /0. According to Zorn’s Lemma (see, for in-
stance, [1, Lemma 1.1]), M has a maximal element M, which must be a closed
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subspace of X not intersecting C. The dimension of the quotient space X/M
is at least 1 because M #= X . The canonical homomorphism π : X → X/M is
continuous and open. If the dimension of X/M is greater than 1, we use Step
1 again with X̃ = X/M and C̃ = π(C) to find a nontrivial subspace M̃ of X̃ that
does not intersect C̃. Then π−1(M̃) is a subspace of X that does not intersect C
and is strictly greater than M, contradicting the maximality of the latter.

Step 3: Conclusion.
Take any (necessarily continuous) isomorphism φ : X/M → R and set L = φ ◦π.
Then, either 〈L,x〉< 0 for all x ∈C, or 〈−L,x〉< 0 for all x ∈C.

A few direct but important consequences
The following is known as the Hahn-Banach Extension Theorem:

Theorem 1.13. Let M be a subspace of X and let ! : M → R be a linear function
such that 〈!,x〉 ≤ α‖x‖ for some α > 0 and all x ∈ M. Then, there exists L ∈ X∗

such that 〈L,x〉= 〈!,x〉 for all x ∈ M and ‖L‖∗ ≤ α.

Proof. Define

A = {(x,µ) ∈ X ×R : µ > α‖x‖, x ∈ X}
B = {(y,ν) ∈ X ×R : ν = 〈!,y〉, y ∈ M}.

By the Hahn-Banach Separation Theorem 1.10, there is (L̃,s) ∈ X∗ ×R\{(0,0)}
such that

〈L̃,x〉+ sµ ≤ 〈L̃,y〉+ sν

for all (x,µ)∈A and (y,ν)∈B. Taking x= y= 0, µ = 1 and ν = 0, we deduce that
s ≤ 0. If s = 0, then 〈L̃,x−y〉 ≤ 0 for all x ∈ X and so L̃ = 0, which contradicts the
fact that (L̃,s) #= (0,0). We conclude that s > 0. Writing L =−L̃/s, we obtain

〈L,x〉−µ ≤ 〈L− !,y〉

for all (x,µ) ∈ A and y ∈ M. Passing to the limit as µ → α‖x‖, we get

〈L,x〉 ≤ 〈L− !,y〉+α‖x‖

for all x ∈ X and all y ∈ M. It follows that L = ! on M and ‖L‖∗ ≤ α.

Another consequence of the Hahn-Banach Separation Theorem 1.10 is the
following:

Corollary 1.14. For each x ∈ X , there exists !x ∈ X∗ such that ‖!x‖∗ = 1 and
〈!x,x〉= ‖x‖.

Proof. Set A = B(0,‖x‖) and B = {x}. By Theorem 1.10, there exists Lx ∈ X \{0}
such that 〈Lx,y〉 ≤ 〈Lx,x〉 for all y ∈ A. This implies 〈Lx,x〉 = ‖Lx‖∗ ‖x‖. The
functional !x = Lx/‖Lx‖∗ has the desired properties.
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The functional !x, given by Corollary 1.14, is a support functional for x. The
normalized duality mapping is the set-valued function F : X →P(X∗) given by

F (x) = {x∗ ∈ X∗ : ‖x∗‖∗ = 1 and 〈x∗,x〉= ‖x‖}.

The set F (x) is always convex and it need not be a singleton, as shown in the
following example:

Example 1.15. Consider X =R2 with ‖(x1,x2)‖= |x1|+ |x2| for (x1,x2)∈X . Then,
X∗ = R2 with 〈(x∗1,x∗2),(x1,x2)〉 = x∗1x1 + x∗2x2 and ‖(x∗1,x∗2)‖∗ = max{|x∗1|, |x∗2|} for
(x∗1,x

∗
2) ∈ X∗. Moreover, F (1,0) = {(1,b) ∈ R2 : b ∈ [−1,1]}.

From Corollary 1.14 we deduce the following:

Corollary 1.16. For every x ∈ X , ‖x‖= max
‖L‖∗=1

〈L,x〉.

Recall from Subsection 1.1 that the canonical embedding J of X into X∗∗

is defined by J (x) = µx, where µx satisfies

〈µx,L〉X∗∗,X∗ = 〈L,x〉X∗,X .

Recall also that J is linear, and ‖J (x)‖∗∗ ≤ ‖x‖ for all x ∈ X . We have the
following:

Proposition 1.17. The canonical embedding J : X → X∗∗ is a linear isometry.

Proof. It remains to prove that ‖x‖ ≤ ‖µx‖∗∗. To this end, simply notice that

‖µx‖∗∗ = sup
‖L‖∗=1

µx(L)≥ µx(!x) = 〈!x,x〉X∗,X = ‖x‖,

where !x is the functional given by Corollary 1.14.

Another consequence of Corollary 1.16 concerns the adjoint of a bounded
linear operator, defined in Subsection 1.1:

Corollary 1.18. Let (X ,‖ · ‖X ) and (Y,‖ · ‖Y ) be normed spaces. Given L ∈
L (X ;Y ), let L∗ ∈ L (Y ∗;X∗) be its adjoint. Then ‖L∗‖L (Y ∗;X∗) = ‖L‖L (X ;Y ).

Proof. We already proved that ‖L∗‖L (Y ∗;X∗) ≤ ‖L‖L (X ;Y ). For the reverse in-
equality, use Corollary 1.16 to deduce that

‖L‖L (X ;Y ) = sup
‖x‖X=1

[
max

‖y∗‖Y∗=1
〈L∗(y∗),x〉X∗,X

]
≤ ‖L∗‖L (Y ∗;X∗),

which gives the result.
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1.3 The weak topology
By definition, each element of X∗ is continuous as a function from (X ,‖ · ‖) to
(R, | · |). However, there are other topologies on X for which every element of X∗

is continuous.1 The coarsest of such topologies (the one with the fewest open
sets) is called the weak topology and will be denoted by σ(X), or simply σ , if
there is no possible confusion.

Given x0 ∈ X , L ∈ X∗ and ε > 0, every set of the form

V ε
L (x0) = {x ∈ X : 〈L,x− x0〉< ε}= L−1

(
(−∞,L(x0)+ ε)

)

is open for the weak topology and contains x0. Moreover, the collection of all
such sets generates a base of neighborhoods of x0 for the weak topology in the
sense that if V0 is a neighborhood of x0, then there exist L1, . . . ,LN ∈ X∗ and
ε > 0 such that

x0 ∈
N⋂

k=1
V ε

Lk
(x0)⊂V0.

Recall that a Hausdorff space is a topological space in which every two
distinct points admit disjoint neighborhoods.

Proposition 1.19. (X ,σ) is a Hausdorff space.

Proof. Let x1 #= x2. Part ii) of the Hahn-Banach Separation Theorem 1.10 shows
the existence of L ∈ X∗ such that 〈L,x1〉+ε ≤ 〈L,x2〉. Then V

ε
2

L (x1) and V
ε
2

−L(x2)
are disjoint weakly open sets containing x1 and x2, respectively.

It follows from the definition that every weakly open set is (strongly) open.
If X is finite-dimensional, the weak topology coincides with the strong topology.
Roughly speaking, the main idea is that, inside any open ball, one can find a
weak neighborhood of its center that can be expressed as a finite intersection
of open half-spaces.

1A trivial example is the discrete topology (for which every set is open), but it is not very
useful for our purposes.
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x0

〈L1,x− x0〉= ε

〈L2,x− x0〉= ε

〈L3,x− x0〉= ε

On the other hand, if X is infinite-dimensional, the weak topology is strictly
coarser than the strong topology, as shown in the following example:

Example 1.20. If X is infinite-dimensional, the ball B(0,1) is open for the strong
topology but not for the weak topology. Roughly speaking, the reason is that
no finite intersection of half-spaces can be bounded in all directions.

In other words, there are open sets which are not weakly open. Of course,
the same is true for closed sets. However, closed convex sets are weakly closed.

Proposition 1.21. A convex subset of a normed space is closed for the strong
topology if, and only if, it is closed for the weak topology.

Proof. By definition, every weakly closed set must be strongly closed. Con-
versely, let C ⊂ X be convex and strongly closed. Given x0 /∈ C, we may apply
part ii) of the Hahn-Banach Separation Theorem 1.10 with A = {x0} and B =C
to deduce the existence of L ∈ X∗ \{0} and ε > 0 such that 〈L,x0〉+ε ≤ 〈L,y〉 for
each y ∈C. The set V ε

L (x0) is a weak neighborhood of x0 that does not intersect
C. It follows that Cc is weakly open.

Weakly convergent sequences
We say that a sequence (xn) in X converges weakly to x̄, and write xn ⇀ x̄, as
n → ∞ if lim

n→∞
〈L,xn − x̄〉= 0 for each L ∈ X∗. This is equivalent to saying that for

each weakly open neighborhood V of x̄ there is N ∈ N such that xn ∈ V for all
n ≥ N. The point x̄ is the weak limit of the sequence.

Since |〈L,xn − x̄〉| ≤ ‖L‖∗ ‖xn − x̄‖, strongly convergent sequences are weakly
convergent and the limits coincide.

Proposition 1.22. Let (xn) converge weakly to x̄ as n → ∞. Then:

i) (xn) is bounded.

ii) ‖x̄‖ ≤ liminf
n→∞

‖xn‖.
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iii) If (Ln) is a sequence in X∗ that converges strongly to L̄, then lim
n→∞

〈Ln,xn〉=
〈L̄, x̄〉.

Proof. For i), write µn = J (xn), where J is the canonical injection of X into
X∗∗, which is a linear isometry, by Proposition 1.17. Since lim

n→∞
µn(L) = 〈L, x̄〉 for

all L ∈ X∗, we have sup
n∈N

µn(L) < +∞. The Banach-Steinhaus Uniform Bounded-

ness Principle (Theorem 1.9) implies sup
n∈N

‖xn‖ = sup
n∈N

‖µn‖∗∗ ≤ C for some C > 0.

For ii), use Corollary 1.14 to deduce that

‖x‖= 〈!x̄,x− xn〉+ 〈!x̄,xn〉 ≤ 〈!x̄,x− xn〉+‖xn‖,

and let n → ∞. Finally, by part i), we have

|〈Ln,xn〉−〈L̄, x̄〉| ≤ |〈Ln − L̄,xn〉|+ |〈L̄,xn − x̄〉|
≤ C‖Ln − L̄‖∗+ |〈L̄,xn − x̄〉|.

As n → ∞, we obtain iii).

More on closed sets
Since we have defined two topologies on X , there exist (strongly) closed sets
and weakly closed sets. It is possible and very useful to define some sequential
notions as well. A set C ⊂ X is sequentially closed if every convergent sequence
of points in C has its limit in C. Analogously, C is weakly sequentially closed if
every weakly convergent sequence in C has its weak limit in C. The relationship
between the various notions of closedness is summarized in the following result:

Proposition 1.23. Consider the following statements concerning a nonempty set
C ⊂ X :

i) C is weakly closed.

ii) C is weakly sequentially closed.

iii) C is sequentially closed.

iv) C is closed.

Then i)⇒ ii)⇒ iii)⇔ iv)⇐ i). If C is convex, the four statements are equivalent.

Proof. It is easy to show that i)⇒ ii) and iii)⇔ iv). We also know that i)⇒ iv)
and ii) ⇒ iii) because the weak topology is coarser than the strong topology.
Finally, if C is convex, Proposition 1.21 states precisely that i) ⇔ iv), which
closes the loop.
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The topological dual revisited: the weak∗ topology
The topological dual X∗ of a normed space (X ,‖ ·‖) is a Banach space with the
norm ‖ ·‖∗. As in Subsection 1.3, we can define the weak topology σ(X∗) in X∗.
Recall that a base of neighborhoods for some point L ∈ X∗ is generated by the
sets of the form

{! ∈ X∗ : 〈µ,!−L〉X∗∗,X∗ < ε }, (1.1)

with µ ∈ X∗∗ and ε > 0.

Nevertheless, since X∗ is, by definition, a space of functions, a third topology
can be defined on X∗ in a very natural way. It is the topology of pointwise
convergence, which is usually referred to as the weak∗ topology in this context.
We shall denote it by σ∗(X∗), or simply σ∗ if the space is clear from the context.
For this topology, a base of neighborhoods for a point L ∈ X∗ is generated by
the sets of the form

{! ∈ X∗ : 〈!−L,x〉X∗,X < ε }, (1.2)

with x ∈ X and ε > 0. Notice the similarity and difference with (1.1). Now, since
every x ∈ X determines an element µx ∈ X∗∗ by the relation

〈µx,!〉X∗∗,X∗ = 〈!,x〉X∗,X ,

it is clear that every set that is open for the weak∗ topology must be open for
the weak topology as well. In other words, σ∗ ⊂ σ .

Reflexivity and weak compactness
In infinite-dimensional normed spaces, compact sets are rather scarce. For in-
stance, in such spaces the closed balls are not compact (see [1, Theorem 6.5]).
One of the most important properties of the weak∗ topology is that, according to
the Banach-Alaoglu Theorem (see, for instance, [1, Theorem 3.16]), the closed
unit ball in X∗ is compact for the weak∗ topology. Recall, from Subsection 1.1,
that X is reflexive if the canonical embedding J of X into X∗∗ is surjective.
This implies that the spaces (X ,σ) and (X∗∗,σ∗) are homeomorphic, and so, the
closed unit ball of X is compact for the weak topology. Further, we have the
following:

Theorem 1.24. Let (X ,‖ ·‖) be a Banach space. The following are equivalent:

i) X is reflexive.

ii) The closed unit ball B̄(0,1) is compact for the weak topology.

iii) Every bounded sequence in X has a weakly convergent subsequence.

We shall not include the proof here for the sake of brevity. The interested
reader may consult [3, Chapters II and V] for full detail, or [1, Chapter 3] for
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abridged commentaries.

An important consequence is the following:
Corollary 1.25. Let (yn) be a bounded sequence in a reflexive space. If ev-
ery weakly convergent subsequence has the same weak limit ŷ, then (yn) must
converge weakly to ŷ as n → ∞.
Proof. Suppose (yn) does not converge weakly to ŷ. Then, there exist a weakly
open neighborhood V of ŷ, and a subsequence (ykn) of (yn) such that ykn /∈ V
for all n ∈ N. Since (ykn) is bounded, it has a subsequence (y jkn

) that converges
weakly as n → ∞ to some y̌ which cannot be in V and so y̌ #= ŷ. This contradicts
the uniqueness of ŷ.

1.4 Differential calculus
Consider a nonempty open set A ⊂ X and function f : A → R. The directional
derivative of f at x ∈ A in the direction d ∈ X is

f ′(x;d) = lim
t→0+

f (x+ td)− f (x)
t

,

whenever this limit exists. The function f is differentiable (or simply Gâteux-
differentiable) at x if f ′(x;d) exists for all d ∈ X and the function d 6→ f ′(x;d) is
linear and continuous. In this situation, the Gâteaux derivative (or gradient)
of f at x is ∇ f (x) = f ′(x; ·), which is an element of X∗. On the other hand, f
is differentiable in the sense of Fréchet (or Fréchet-differentiable) at x if there
exists L ∈ X∗ such that

lim
‖h‖→0

| f (x+h)− f (x)−〈L,h〉|
‖h‖ = 0.

If it is the case, the Fréchet derivative of f at x is D f (x) = L. An immediate
consequence of these definitions is
Proposition 1.26. If f is Fréchet-differentiable at x, then it is continuous and
Gâteaux-differentiable there, with ∇ f (x) = D f (x).

As usual, f is differentiable (in the sense of Gâteaux or Fréchet) on A if it
is so at every point of A.

Example 1.27. Let B : X ×X → R be a bilinear function:

B(x+αy,z) = B(x,z)+αB(y,z) and B(x,y+αz) = B(x,y)+αB(x,z)

for all x,y,z ∈ X and α ∈ R. Suppose also that B is continuous: |B(x,y)| ≤
β ‖x‖‖y‖ for some β ≥ 0 and all x,y ∈ X . The function f : X → R, defined by
f (x) = B(x,x), is Fréchet-differentiable and D f (x)h = B(x,h)+B(h,x). Of course,
if B is symmetric: B(x,y) = B(y,x) for all x,y ∈ X , then D f (x)h = 2B(x,h).
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Example 1.28. Let X be the space of continuously differentiable functions defined
on [0,T ] with values in RN , equipped with the norm

‖x‖X = max
t∈[0,T ]

‖x(t)‖+ max
t∈[0,T ]

‖ẋ(t)‖.

Given a continuously differentiable function ! : R×RN ×RN →R, define J : X →R
by

J[u] =
∫ T

0
!(t,x(t), ẋ(t))dt.

Then J is Fréchet-differentiable and

DJ(x)h =
∫ T

0

[
∇2!(t,x(t), ẋ(t)) ·h(t)+∇3!(t,x(t), ẋ(t)) · ḣ(t)

]
dt,

where we use ∇i to denote the gradient with respect to the i-th set of variables.

It is to note that the Gâteaux-differentiability does not imply continuity. In
particular, it is weaker than Fréchet-differentiability.

Example 1.29. Define f : R2 → R by

f (x,y) =






2x4y
x6 + y3 if (x,y) #= (0,0)

0 if (x,y) = (0,0).

A simple computation shows that ∇ f (0,0) = (0,0). However, lim
z→0

f (z,z2) = 1 #=
f (0,0).

If the gradient of f is Lipschitz-continuous, we can obtain a more precise
first-order estimation for the values of the function:

Lemma 1.30 (Descent Lemma). If f : X → R is Gâteaux-differentiable and ∇ f
is Lipschitz-continuous with constant L, then

f (y)≤ f (x)+ 〈∇ f (x),y− x〉+ L
2
‖y− x‖2

for each x,y ∈ X . In particular, f is continuous.

Proof. Write h = y− x and define g : [0,1]→ R by g(t) = f (x+ th). Then ġ(t) =
〈∇ f (x+ th),h〉for each t ∈ (0,1), and so

∫ 1

0
〈∇ f (x+ th),h〉dt =

∫ 1

0
ġ(t)dt = g(1)−g(0) = f (y)− f (x).
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Therefore,

f (y)− f (x) =
∫ 1

0
〈∇ f (x),h〉dt +

∫ 1

0
〈∇ f (x+ th)−∇ f (x),h〉dt

≤ 〈∇ f (x),h〉+
∫ 1

0
‖∇ f (x+ th)−∇ f (x)‖‖h‖dt

≤ 〈∇ f (x),h〉+L‖h‖2
∫ 1

0
t dt

= 〈∇ f (x),y− x〉+ L
2
‖y− x‖2,

as claimed.

Second derivatives
If f : A → R is Gâteaux-differentiable in A, a valid question is whether the
function ∇ f : A → X∗ is differentiable. As before, one can define a directional
derivative

(∇ f )′(x;d) = lim
t→0+

∇ f (x+ td)−∇ f (x)
t

,

whenever this limit exists (with respect to the strong topology of X∗). The
function f is twice differentiable in the sense of Gâteaux (or simply twice
Gâteaux-differentiable) in x if f is Gâteaux-differentiable in a neighborhood
of x, (∇ f )′(x;d) exists for all d ∈ X , and the function d 6→ (∇ f )′(x;d) is linear
and continuous. In this situation, the second Gâteaux derivative (or Hessian)
of f at x is ∇2 f (x) = (∇ f )′(x; ·), which is an element of L (X ;X∗). Similarly, f
is twice differentiable in the sense of Fréchet (or twice Fréchet-differentiable) at
x if there exists M ∈ L (X ;X∗) such that

lim
‖h‖→0

‖D f (x+h)−D f (x)−M(h)‖∗
‖h‖ = 0.

The second Fréchet derivative of f at x is D2 f (x) = M.

We have the following:

Proposition 1.31 (Second-order Taylor Approximation). Let A be an open subset
of X and let x ∈ A. Assume f : A → R is twice Gâteaux-differentiable in x. Then,
for each d ∈ X , we have

lim
t→0

1
t2

∣∣∣∣ f (x+ td)− f (x)− t〈∇ f (x),d〉− t2

2
〈∇2 f (x)d,d〉

∣∣∣∣= 0.

Proof. Define φ : I ⊂ R → R by φ(t) = f (x+ td), where I is a sufficiently small
open interval around 0 such that φ(t) exists for all t ∈ I. It is easy to see
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that φ ′(t) = 〈∇ f (x+ td),d〉 and φ ′′(0) = 〈∇2 f (x)d,d〉. The second-order Taylor
expansion for φ in R yields

lim
t→0

1
t2

∣∣∣∣φ(t)−φ(0)− tφ ′(0)− t2

2
φ ′′(0)

∣∣∣∣= 0,

which gives the result.

Of course, it is possible to define derivatives of higher order, and obtain the
corresponding Taylor approximations.

Optimality conditions for differentiable optimization problems
The following is the keynote necessary condition for a point x̂ to minimize a
Gâteaux-differentiable function f over a convex set C.

Theorem 1.32 (Fermat’s Rule). Let C be a convex subset of a normed space
(X ,‖ · ‖) and let f : X → R ∪ {+∞}. If f (x̂) ≤ f (y) for all y ∈ C and if f is
Gâteaux-differentiable at x̂, then

〈∇ f (x̂),y− x̂〉 ≥ 0

for all y ∈C. If moreover x̂ ∈ int(C), then ∇ f (x̂) = 0.

Proof. Take y∈C. Since C is convex, for each λ ∈ (0,1), the point yλ = λy+(1−
λ )x̂ belongs to C. The inequality f (x̂)≤ f (yλ ) is equivalent to f (x̂+λ (y− x̂))−
f (x̂)≥ 0. It suffices to divide by λ and let λ → 0 to deduce that f ′(x̂;y− x̂)≥ 0
for all y ∈C.

To fix the ideas, consider a differentiable function on X = R2. Theorem 1.32
states that the gradient of f at x̂ must point inwards, with respect to C. In
other words, f can only decrease by leaving the set C. This situation is depicted
below:

x̂

∇ f (x̂)

C

Level curves of f

As we shall see in the next chapter, the condition given by Fermat’s Rule
(Theorem 1.32) is not only necessary, but also sufficient, for convex functions.
In the general case, one can provide second-order necessary and sufficient con-
ditions for optimality. We state this result in the unconstrained case (C = X)
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for simplicity.

An operator M ∈L (X ;X∗) is positive semidefinite if 〈Md,d〉 ≥ 0 for all d ∈ X ;
positive definite if 〈Md,d〉> 0 for all d #= 0; and uniformly elliptic with constant
α > 0 if 〈Md,d〉 ≥ α

2 ‖d‖2 for all d ∈ X .

Theorem 1.33. Let A be an open subset of a normed space (X ,‖ · ‖), let x̂ ∈ A,
and let f : A → R.

i) If f (x̂) ≤ f (y) for all y in a neighborhood of x̂, and f is twice Gâteaux-
differentiable at x̂, then ∇ f (x̂) = 0 and ∇2 f (x̂) is positive semidefinite.

ii) If ∇ f (x̂) = 0 and ∇2 f (x̂) is uniformly elliptic, then f (x̂)< f (y) for all y in
a neighborhood of x̂.

Proof. For i), we already know by Theorem 1.32 that ∇ f (x̂) = 0. Now, if d ∈ X
and ε > 0, by Proposition 1.31, there is t0 > 0 such that

t2

2
〈∇2 f (x̂)d,d〉> f (x̂+ td)− f (x̂)− εt2 ≥−εt2

for all t ∈ [0, t0]. It follows that 〈∇2 f (x̂)d,d〉 ≥ 0.

For ii), assume ∇2 f (x̂) is uniformly elliptic with constant α > 0 and take
d ∈ X . Set ε = α

4 ‖d‖2. By Proposition 1.31, there is t1 > 0 such that

f (x̂+ td)> f (x̂)+
t2

2
〈∇2 f (x̂)d,d〉− εt2 ≥ f (x̂)

for all t ∈ [0, t1].



Chapter 2

Hilbert spaces

Hilbert spaces are an important class of Banach spaces with rich geometric
properties.

2.1 Basic concepts, properties and examples
An inner product in a real vector space H is a function 〈· , ·〉 : H ×H → R such
that:

i) 〈x,x〉> 0 for every x #= 0;

ii) 〈x,y〉= 〈y,x〉 for each x,y ∈ H;

iii) 〈αx+ y,z〉= α〈x,z〉+ 〈y,z〉 for each α ∈ R and x,y,z ∈ H.

The function ‖ ·‖ : H → R, defined by ‖x‖=
√
〈x,x〉, is a norm on H. Indeed,

it is clear that ‖x‖> 0 for every x #= 0. Moreover, for each α ∈ R and x ∈ H, we
have ‖αx‖= |α|‖x‖. It only remains to verify the triangle inequality. We have
the following:

Proposition 2.1. For each x,y ∈ H we have

i) The Cauchy-Schwarz inequality: |〈x,y〉|≤ ‖x‖‖y‖.

ii) The triangle inequality: ‖x+ y‖ ≤ ‖x‖+‖y‖.

Proof. The Cauchy-Schwarz inequality is trivially satisfied if y = 0. If y #= 0 and
α > 0, then

0 ≤ ‖x±αy‖2 = 〈x±αy,x±αy〉= ‖x‖2 ±2α〈x,y〉+α2‖y‖2.

Therefore,
|〈x,y〉|≤ 1

2α ‖x‖2 +
α
2
‖y‖2

21
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for each α > 0. In particular, taking α = ‖x‖/‖y‖, we deduce i). Next, we use
i) to deduce that

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2,

whence ii) holds.

If ‖x‖=
√
〈x,x〉 for all x ∈ X , we say that the norm ‖ ·‖ is associated to the

inner product 〈· , ·〉. A Hilbert space is a Banach space, whose norm is associated
to an inner product.
Example 2.2. The following are Hilbert spaces:

i) The Euclidean space RN is a Hilbert space with the inner product given
by the dot product: 〈x,y〉= x · y.

ii) The space !2(N;R) of real sequences x = (xn) such that

∑
n∈N

x2
n <+∞,

equipped with the inner product defined by 〈x,y〉= ∑n∈N xnyn.

iii) Let Ω be a bounded open subset of RN . The space L2(Ω;RM) of (classes
of) measurable vector fields φ : Ω → RM such that

∫

Ω
φm(ζ )2 dζ <+∞, for m = 1,2, . . . ,M,

with the inner product 〈φ ,ψ〉= ∑M
m=1

∫
Ω φm(ζ )ψm(ζ )dζ .

By analogy with RN , it seems reasonable to define the angle γ between two
nonzero vectors x and y by the relation

cos(γ) = 〈x,y〉
‖x‖‖y‖ , γ ∈ [0,π].

We shall say that x and y are orthogonal, and write x⊥ y, if cos(γ) = 0. In a
similar fashion, we say x and y are parallel, and write x‖y, if |cos(γ)|= 1. With
this notation, we have

i) Pythagoras Theorem: x⊥y if, and only if, ‖x+ y‖2 = ‖x‖2 +‖y‖2;

ii) The colinearity condition: x‖y if, and only if, x = λy with λ ∈ R.
Another important geometric property of the norm in a Hilbert space is the

Parallelogram Identity, which states that

‖x+ y‖2 +‖x− y‖2 = 2
(
‖x‖2 +‖y‖2

)
(2.1)

for each x,y ∈ H. It shows the relationship between the length of the sides and
the lengths of the diagonals in a parallelogram, and is easily proved by adding
the following identities

‖x+ y‖2 = ‖x‖2 +‖y‖2 +2〈x,y〉 and ‖x− y‖2 = ‖x‖2 +‖y‖2 −2〈x,y〉.
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‖x‖

‖y‖

‖x+ y‖

‖x− y‖

Example 2.3. The space X = C ([0,1];R) with the norm ‖x‖ = max
t∈[0,1]

|x(t)| is not

a Hilbert space. Consider the functions x,y ∈ X , defined by x(t) = 1 and y(t) = t
for t ∈ [0,1]. We have ‖x‖ = 1, ‖y‖ = 1, ‖x + y‖ = 2 and ‖x − y‖ = 1. The
parallelogram identity (2.1) does not hold.

2.2 Projection and orthogonality
An important property of Hilbert spaces is that given a nonempty, closed and
convex subset K of H and a point x /∈ K, there is a unique point in K which is
the closest to x. More precisely, we have the following:

Proposition 2.4. Let K be a nonempty, closed and convex subset of H and let
x ∈ H. Then, there exists a unique point y∗ ∈ K such that

‖x− y∗‖= min
y∈K

‖x− y‖. (2.2)

Moreover, it is the only element of K such that

〈x− y∗,y− y∗〉 ≤ 0 for all y ∈ K. (2.3)

Proof. We shall prove Proposition 2.4 in three steps: first, we verify that (2.2)
has a solution; next, we establish the equivalence between (2.2) and (2.3); and
finally, we check that (2.3) cannot have more than one solution.

First, set d = inf
y∈K

‖x−y‖ and consider a sequence (yn) in K such that lim
n→∞

‖yn−

x‖= d. We have

‖yn − ym‖2 = ‖(yn − x)+(x− ym)‖2

= 2
(
‖yn − x‖2 +‖ym − x‖2

)
−‖(yn + ym)−2x‖2,

by virtue of the parallelogram identity (2.1). Since K is convex, the midpoint
between yn and ym belongs to K. Therefore,

‖(yn + ym)−2x‖2 = 4
∥∥∥∥

yn + ym

2
− x

∥∥∥∥
2
≥ 4d2,
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according to the definition of d. We deduce that

‖yn − ym‖2 ≤ 2
(
‖yn − x‖2 +‖ym − x‖2 −2d2

)
.

Whence, (yn) is a Cauchy sequence, and must converge to some y∗, which must
lie in K by closedness. The continuity of the norm implies d = lim

n→∞
‖yn − x‖ =

‖y∗ − x‖.

Next, assume (2.2) holds and let y ∈ K. Since K is convex, for each λ ∈ (0,1)
the point λy+(1−λ )y∗ also belongs to K. Therefore,

‖x− y∗‖2 ≤ ‖x−λy− (1−λ )y∗‖2

= ‖x− y∗‖2 +2λ (1−λ )〈x− y∗,y∗ − y〉+λ 2‖y∗ − y‖2.

This implies
〈x− y∗,y− y∗〉 ≤ λ

2(1−λ )‖y∗ − y‖2.

Letting λ → 0 we obtain (2.3). Conversely, if (2.3) holds, then

‖x− y‖2 = ‖x− y∗‖2 +2〈x− y∗,y∗ − y〉+‖y∗ − y‖2 ≥ ‖x− y∗‖2

for each y ∈ K and (2.2) holds.

Finally, if y∗1,y
∗
2 ∈ K satisfy (2.3), then

〈x− y∗1,y
∗
2 − y∗1〉 ≤ 0 and 〈x− y∗2,y

∗
1 − y∗2〉 ≤ 0.

Adding the two inequalities we deduce that y∗1 = y∗2.

The point y∗ given by Proposition 2.4 is the projection of x onto K and will
be denoted by PK(x). The characterization of PK(x) given by (2.3) says that for
each x /∈ K, the set K lies in the closed half-space

S = { y ∈ H : 〈x−PK(x),y−PK(x)〉 ≤ 0 }.

Corollary 2.5. Let K be a nonempty, closed and convex subset of H. Then
K = ∩x/∈K{y ∈ H : 〈x−PK(x),y−PK(x)〉}.

Conversely, the intersection of closed convex half-spaces is closed and convex.

For subspaces we recover the idea of orthogonal projection:

Proposition 2.6. Let M be a closed subspace of H. Then,

〈x−PM(x),u〉= 0

for each x ∈ H and u ∈ M. In other words, x−PM(x)⊥ M.
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Proof. Let u ∈ M and write v± = PM(x)±u. Then v± ∈ M and so

±〈x−PM(x),u〉 ≤ 0.

It follows that 〈x−PM(x),u〉= 0.

Another property of the projection, bearing important topological conse-
quences, is the following:

Proposition 2.7. Let K be a nonempty, closed and convex subset of H. The
function x 6→ PK(x) is nonexpansive.

Proof. Let x1,x2 ∈H. Then 〈x1−PK(x1),PK(x2)−PK(x1)〉≤ 0 and 〈x2−PK(x2),PK(x1)−
PK(x2)〉 ≤ 0. Summing these two inequalities we obtain

‖PK(x1)−PK(x2)‖2 ≤ 〈x1 − x2,PK(x1)−PK(x2)〉.

We conclude using the Cauchy-Schwarz inequality.

2.3 Duality, reflexivity and weak convergence
The topological dual of a real Hilbert space can be easily characterized. Given
y ∈ H, the function Ly : H → R, defined by Ly(h) = 〈y,h〉, is linear and continuous
by the Cauchy-Schwarz inequality. Moreover, ‖Ly‖∗ = ‖y‖. Conversely, we have
the following:

Theorem 2.8 (Riesz Representation Theorem). Let L : H → R be a continuous
linear function on H. Then, there exists a unique yL ∈ H such that

L(h) = 〈yL,h〉

for each h ∈ H. Moreover, the function L 6→ yL is a linear isometry.

Proof. Let M = ker(L), which is a closed subspace of H because L is linear and
continuous. If M = H, then L(h) = 0 for all h ∈ H and it suffices to take yL = 0.
If M #= H, let us pick any x /∈ M and define

x̂ = x−PM(x).

Notice that x̂ #= 0 and x̂ /∈ M. Given any h ∈ H, set uh = L(x̂)h−L(h)x̂, so that
uh ∈ M. By Proposition 2.6, we have 〈x̂,uh〉= 0. In other words,

0 = 〈x̂,uh〉= 〈x̂,L(x̂)h−L(h)x̂〉= L(x̂)〈x̂,h〉−L(h)‖x̂‖2.

The vector
yL =

L(x̂)
‖x̂‖2 x̂

has the desired property and it is straightforward to verify that the function
L 6→ yL is a linear isometry.
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As a consequence, the inner product 〈· , ·〉∗ : H∗ ×H∗ defined by

〈L1,L2〉∗ = L1(yL2) = 〈yL1 ,yL2〉

turns H∗ into a Hilbert space, which is isometrically isomorphic to H. The norm
associated with 〈· , ·〉∗ is precisely ‖ ·‖∗.

Corollary 2.9. Hilbert spaces are reflexive.

Proof. Given µ ∈H∗∗, use the Riesz Representation Theorem 2.8 twice to obtain
Lµ ∈ H∗ such that µ(!) = 〈Lµ ,!〉∗ for each ! ∈ H∗, and then yLµ ∈ H such that
Lµ(x) = 〈yLµ ,x〉 for all x ∈ H. It follows that µ(!) = 〈Lµ ,!〉∗ = !(yLµ ) for each
! ∈ H∗ by the definition of 〈· , ·〉∗.

Remark 2.10. Theorem 2.8 also implies that a sequence (xn) on a Hilbert space
H converges weakly to some x ∈ H if, and only if, lim

n→∞
〈xn −x,y〉= 0 for all y ∈ H.

Strong and weak convergence can be related as follows:

Proposition 2.11. A sequence in (xn) converges strongly to x̄ if, and only if, it
converges weakly to x̄ and limsup

n→∞
‖xn‖ ≤ ‖x̄‖.

Proof. The only if part is immediate. For the if part, notice that 0≤ limsup
n→∞

‖xn−

x̄‖2 = limsup
n→∞

[
‖xn‖2 +‖x̄‖2 −2 〈xn, x̄〉

]
≤ 0.

Remark 2.12. Another consequence of Theorem 2.8 is that we may interpret
the gradient of a Gâteaux-differentiable function f as an element of H instead
of H∗ (see Subsection 1.4).
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